Riemann moduli spaces are quantum ergodic

نویسندگان

چکیده

In this note we show that the Riemann moduli spaces $M_{\gamma,n}$ equipped with Weil–Petersson metric are quantum ergodic for $3 \gamma + n \geq 4$. We also provide other examples of singular geodesic flow which ergodicity holds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodic Theory on Moduli Spaces

Let M be a compact surface with (M) < 0 and let G be a compact Lie group whose Levi factor is a product of groups locally isomorphic to SU(2) (for example SU(2)). Then the map

متن کامل

Horocyclic Coordinates for Riemann Surfaces and Moduli Spaces. I: Teichmuller and Riemann Spaces of Kleinian Groups

O. Introduction and statement of main results 1. Horocyclic coordinates 2. The zw = t plumbing construction 3. The plumbing construction for an admissible graph 4. Deformation (TeichmiiUer) and moduli (Riemann) spaces 5. Torsion free terminal b-groups 6. One-dimensional deformation spaces 7. Deformation spaces for torsion free terminal b-groups 8. One-dimensional moduli spaces 9. Moduli spaces ...

متن کامل

Horocyclic Coordinates for Riemann Surfaces and Moduli Spaces. I: Teichmuller and Riemann Spaces of Kleinian Groups

O. Introduction and statement of main results 1. Horocyclic coordinates 2. The zw = t plumbing construction 3. The plumbing construction for an admissible graph 4. Deformation (TeichmiiUer) and moduli (Riemann) spaces 5. Torsion free terminal b-groups 6. One-dimensional deformation spaces 7. Deformation spaces for torsion free terminal b-groups 8. One-dimensional moduli spaces 9. Moduli spaces ...

متن کامل

Automorphisms of C∗ Moduli Spaces Associated to a Riemann Surface

We compute the automorphism groups of the Dolbeault, de Rham and Betti moduli spaces for the multiplicative group C∗ associated to a compact connected Riemann surface.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 2023

ISSN: ['1945-743X', '0022-040X']

DOI: https://doi.org/10.4310/jdg/1683307003